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Anderson impurity in pseudo-gap Fermi systems
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‡ Institut für Theoretische Physik der Universität, 93040 Regensburg, Germany
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Abstract. We use the numerical renormalization group method to study an Anderson impurity
in a conduction band with the density of states varying asρ(ω) ∝ |ω|r with r > 0. We find
two different fixed points: a local-moment fixed point with the impurity effectively decoupled
from the band and a strong-coupling fixed point with a partially screened impurity spin. The
specific heat and the spin susceptibility show power-law behaviour with different exponents in
the strong-coupling and local-moment regimes. We also calculate the impurity spectral function
which diverges (vanishes) with|ω|−r (|ω|r ) in the strong-coupling (local-moment) regime.

1. Introduction

The behaviour of magnetic impurities in metals is one of the best-studied problems in
condensed matter theory [1]. In most cases it is a very good approximation to replace the
conduction density of states by a constant, as small variations of the density of states do
not lead to a qualitative change of the physical properties (like the complete screening of
the impurity spin by the conduction electrons).

The question of whether these physical properties are different when the impurity is
coupled to a Fermi system with a power-law density of statesρ(ω) ∝ |ω|r near the Fermi
level was first discussed by Withoff and Fradkin [2].

A number of systems are expected to show this pseudo-gap density of states. Among
these are certain heavy-fermion superconductors [3] where the exponentr can take the
valuesr = 1 or r = 2 depending on the symmetry of the gap function. Other candidates
are semiconductors whose valence and conduction bands touch at the Fermi level [4]. In
quasi-one-dimensional metals, which can be viewed as realizations of the Luttinger model,
the exponentr is a function of the Coulomb interaction [5] and can take values between
r � 1 andr > 1.

Recently, the numerical renormalization group method (NRG) [6, 7] has been applied by
Chen and Jayaprakash [8] (referred to as CJ) and Ingersent [9] to the model of an impurity
spin coupled to a conduction band with a power-law density of states. In principle, this
Kondo model can be related to a corresponding Anderson model in the limit ofJ → 0 via
a standard Schrieffer–Wolff transformation [10]. There is, however, a transition between a
strong-coupling (SC) fixed point and a local-moment (LM) fixed point for the Kondo model
at finite J , so it is not cleara priori whether the behaviour at this transition will be the
same in the Anderson version of the model.
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Germany.
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The results of CJ and Ingersent can be summarized as follows. For anyJ > Jc the
system approaches some kind of SC fixed point with the difference from the standard Kondo
model (r = 0) that the impurity spin is not completely screened (a residual magnetic moment
of r/8 always remains in the zero-temperature limit). This can be qualitatively understood
from the gradually decreasing density of states of the conduction electrons at the Fermi
level which are responsible for the screening.

The thermodynamic quantities show non-Fermi liquid behaviour in the SC regime:

γ (T ) = C(T )

T
∝ T −r (1)

χS(T ) = r

8
T −1+ aT −r + bT −2r (2)

(with a, b = constant). The critical lineJc(r) starts linearly for smallr but diverges at
r = 1

2. In addition, Ingersent has shown that this divergence only holds in the particle–hole
symmetric case and that a finiteJc is restored away from this symmetry. (This reduction
of Jc has implications for the observability of the crossover in experimental situations.)

For any J < Jc, the system approaches the LM fixed point where the impurity is
effectively decoupled from the conduction band and a residual magnetic moment of 1/4
remains. The thermodynamics in this regime has not yet been investigated.

In this paper, we want to study the behaviour of an Anderson impurity in a pseudo-gap
fermion system where we restrict ourselves to the symmetric case. In section 2, we want
to describe our approach to the generalization of the NRG with a non-constant density of
states, and outline the differences from that of CJ and Ingersent. The resulting formula for
the hopping matrix elements of the semi-infinite chain forall n is given in section 3. The
numerical results for static properties and the spectral function are discussed in sections 4
and 5, respectively.

2. Generalization of NRG to a non-constant density of states

The Hamiltonian that we want to study in this paper is the conventional single-impurity
Anderson model

H =
∑
σ

εff
†
−1σ f−1σ + Uf †−1↑f−1↑f

†
−1↓f−1↓

+
∑
kσ

εkc
†
kσ ckσ +

∑
kσ

V (εk)
(
f
†
−1σ ckσ + c†kσ f−1σ

)
. (3)

In the model (3), thec(†)kσ denote standard annihilation (creation) operators for band states
with spin σ and energyεk, the f (†)−1,σ those for impurity states with spinσ and energy
εf . The Coulomb interaction for two electrons at the impurity site is given byU and the
two subsystems are coupled via an energy-dependent hybridizationV (εk) (the restriction
to a hybridization depending onk only throughεk is not necessary but is convenient for
pedagogical reasons).

In the following we show that the Hamiltonian (3) is equivalent to a form which is
more convenient for the derivation of the NRG equations:

H =
∑
σ

εff
†
−1σ f−1σ + Uf †−1↑f−1↑f

†
−1↓f−1↓

+
∑
σ

∫ 1

−1
dε g(ε)a†εσ aεσ +

∑
σ

∫ 1

−1
dε h(ε)

(
f
†
−1σ aεσ + a†εσ f−1σ

)
(4)
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where we introduced a one-dimensional energy representation for the conduction band with
band cut-offs at±1, dispersiong(ε) and hybridizationh(ε). The band operators fulfil the
standard fermionic commutation rules

[
a†εσ , aε′σ ′

] = δ(ε − ε′)δσσ ′ .
To establish the equivalence of the Hamiltonians (3) and (4) we prove that for a specific

choice of g(ε) and h(ε) they lead to the same effective action for the impurity degree
of freedom. This effective action is obtained by integrating over the conduction electron
degrees of freedom. For the Hamiltonian (3) one gets

Seff(ψ,ψ
†) = Sf(ψ,ψ

†)+
(
β

N

)2∑
σnm

ψ
†
σn+1ψσm−1

∑
k

V (εk)
2Gc

nm(k) (5)

(see for example [11]).n andm count the steps on the imaginary time axis [0, β] with
N the number of steps.ψ andψ† are Grassmann numbers corresponding to the impurity
operators.Sf describes the unhybridized impurity. TheGc

nm(k) are Green functions for the
free conduction electron system.

The action corresponding to the Hamiltonian (4) can be written as

S(ψ,ψ†, χ, χ †) = Sf(ψ,ψ
†)+

∑
σn

∫ 1

−1
dε χ †εσn

((
1− β

N
g(ε)

)
χεσn−1− χεσn

)
− β

N

∑
σn

∫ 1

−1
dε h(ε)

[
χ †εσnψσn−1+ ψ†σnχεσn−1

]
. (6)

χ
†
εσn andχεσn are Grassmann numbers corresponding to the conduction electron operators
a†εσ andaεσ . Integrating over the conduction electron degrees of freedom leads to

Seff(ψ,ψ
†) = Sf(ψ,ψ

†)+
(
β

N

)2∑
σnm

ψ
†
σn+1ψσm−1

∫ 1

−1
dε h(ε)2Gc

nm(g(ε)). (7)

To compare the effective actions (5) and (7), the sum overk in (5) has to be transformed
into the energy integral∑

k

V (εk)
2Gc

nm(k) =
∫ 1

−1
dε V (ε)2ρ(ε)Gc

nm(ε). (8)

This also defines the density of states for the free conduction electronsρ(ε). The equivalence
of the effective actions (5) and (7) leads to the condition∫ 1

−1
dg

∂ε(g)

∂g
h(ε(g))2Gc

nm(g) ≡
∫ 1

−1
dε V (ε)2ρ(ε)Gc

nm(ε). (9)

This can only be fulfilled for

∂ε(x)

∂x
h(ε(x))2 = V (x)2ρ(x) (10)

(with ε(x) the inverse ofg(ε)). For a given1(x) ≡ πV (x)2ρ(x) there are obviously many
ways of dividing the energy dependence betweenε(x) and the dispersionh(ε(x)). One
possibility is to choose

g(ε) = ε and h(ε)2 = 1

π
1(ε). (11)

For 1(ε) = 1, equation (11) corresponds to the standard case (see equation (2.4) in [7]).
It might also be convenient to seth(ε) = h. Together with the conditionε(−1) = −1 and
ε(1) = 1 this leads to

ε(g) = −1+ 1

πh2

∫ g

−1
dx 1(x) (12a)
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and

h2 = 1

2π

∫ 1

−1
dε 1(ε). (12b)

These equations also reduce toε(g) = g and h2 = (1/π)1 for a constant1(ε) = 1.
Equations (11) and (12b) have already been derived by CJ [12]. In a subsequent publication
[8] these authors used equation (12b) for the mapping of the Kondo model onto a semi-
infinite chain (see appendix A for a discussion of the resulting hopping matrix elements).

The first possibility (11) has a conceptual disadvantage arising from the logarithmic
discretization of the conduction band. Within each interval [xn+1, xn] and [−xn,−xn+1],
with xn = 3−n, the conduction electron operators are expressed in terms of a Fourier
expansion. As long ash(ε)2 is constant in each interval, the impurity couples only to
the average component (p = 0) of the conduction electrons. Therefore it is reasonable
to neglect all of thep 6= 0 states (this becomes exact in the limit3 → 1). This line of
reasoning obviously does not hold for equation (11).

On the other hand, the energy dependence of1(ε) can be taken into account in the
hybridization by definingh(ε)2 as the mean value:

h±n
2 = 1

dn

∫ ±
dε

1

π
1(ε) (13)∫ +

dε ≡
∫ xn

xn+1

dε
∫ −

dε ≡
∫ −xn+1

−xn
dε (14)

(with dn = xn−xn+1) in each interval of the logarithmic discretization. This is so far not an
approximation, as the remaining energy dependence will be incorporated in the dispersion.
The advantage of an energy-dependent hybridization as in equation (13) is that the resulting
dispersion has the formg(±xn) = ±xn for all n, i.e. at all pointsxn of the logarithmic
discretization. This ‘linear’ form (for intermediate values,g(ε) = ε is not fulfilled) leads
to a scaling behaviour of the hopping matrix elements (see equation (30)) of the form
tn ∝ 3−n/2, slightly modified due to the structure of1(ε). The representation (12b),
however, leads to a scaling with an effective3eff not equal to3 which might even depend
on the number of iterations, thus making the analyses (of the fixed points, the relevant
energy scale, etc) more difficult.

For these reasons, we adopt the representation (13) in the following. This gives for the
hybridization part of the discretized Hamiltonian

Hhyb =
√
ξ0

π

∑
n

[
f
†
−1σ f0σ + f †0σ f−1σ

]
(15)

with

f0σ = 1√
ξ0

∑
n

[
γ+n anσ + γ−n bnσ

]
(16)

ξ0 =
∑
n

((γ+n )
2+ (γ−n )2) =

∫ 1

−1
dε 1(ε) (17)

(γ±n )
2 =

∫ ±
dε 1(ε). (18)

The discrete conduction electron operatorsanσ (bnσ ) for positive (negative)ε correspond
to those introduced in [6, 7]. According to the differential equation (10) we should now
have to solve forε(x) and invertε(x) to obtain the dispersionx(ε) ≡ g(ε). This is actually
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not necessary because the single-particle energies in the conduction electron part of the
discretized Hamiltonian

Hc =
∑
nσ

[
ξ+n a

†
nσ anσ + ξ−n b†nσ bnσ

]
(19)

only depend on the integral overg(ε):

ξ±n =
1

dn

∫ ±
dε g(ε). (20)

It can be shown that the discrete energiesξ±n are given by

ξ±n =
∫ ±

dε 1(ε)ε
/∫ ±

dε 1(ε). (21)

This equation, together with the form of the hybridization part, has already been used by
Sakai and Kuramoto [13], although no derivation was given in their article.

The discretized Hamiltonian for the single-impurity Anderson model now takes the form

H =
∑
σ

εff
†
−1σ f−1σ + Uf †−1↑f−1↑f

†
−1↓f−1↓ +

∑
nσ

[
ξ+n a

†
nσ anσ + ξ−n b†nσ bnσ

]
+
√
ξ0

π

[
f
†
−1σ f0σ + f †0σ f−1σ

]
. (22)

3. The pseudo-gap density of states—mapping onto a semi-infinite chain

We now consider a1(ω) of the form

1(ω) = 10|ω|r − 16 ω 6 1. (23)

The discrete energiesξ±n of the conduction electrons and the hybridization matrix elements
γ±n connecting impurity and the conduction electrons take the form

ξ+n = −ξ−n =
r + 1

r + 2

1−3−(r+2)

1−3−(r+1)
3−n (24)

and

(γ+n )
2 = (γ−n )2 =

10

r + 1
3−n(r+1)(1−3−(r+1)). (25)

The mapping of the discretized Hamiltonian (22) onto the semi-infinite chain form

H =
∑
σ

εff
†
−1σ f−1σ + Uf †−1↑f−1↑f

†
−1↓f−1↓

+
∞∑

σn=0

tn

[
f †nσ fn+1σ + f †n+1σ fnσ

]
+
√
ξ0

π

[
f
†
−1σ f0σ + f †0σ f−1σ

]
(26)

where

ξ0 = 210

r + 1
(27)

is described in [6] and [7]. The only difference appearing here is ther-dependence of the
ξ±n andγ±n . (Note that in the non-symmetric case, additional terms of the formεnf

†
nσ fnσ

are generated.) For the hopping matrix elementstn we find the following expressions:

tn = 3−n/2 r + 1

r + 2

1−3−(r+2)

1−3−(r+1)

[
1−3−(n+r+1)

] [
1−3−(2n+r+1)

]−1/2 [
1−3−(2n+r+3)

]−1/2

(28)



10468 R Bulla et al

for evenn and

tn = 3−(n+r)/2 r + 1

r + 2

1−3−(r+2)

1−3−(r+1)

[
1−3−(n+1)

]
× [

1−3−(2n+r+1)
]−1/2 [

1−3−(2n+r+3)
]−1/2

(29)

for odd n. Equations (28) and (29) have been verified numerically and by analytical
calculation oft0 and t1. In the limit n→∞, equations (28) and (29) reduce to

tn
n→∞−→ r + 1

r + 2

1−3−(r+2)

1−3−(r+1)
3−n/2

{
1 n even

3−r/2 n odd.
(30)

This limit of the hopping matrix elements has also been found by Ingersent [9], although
the formula forall n is not given in his paper. The result obtained by CJ is discussed in
the appendix.

An analytical form of thetn for all n > 0 can only be given when the power law
1(ω) = 10|ω|r extends to the band edges. In any experimental realization, however, we
expect this power law only to be valid near the Fermi level. On the other hand, numerical
studies show that any deviation from the form (23) close to the band edges merely affects
the first coefficients, while the asymptotic behaviour again depends onr only and is given
by (30). Thus the qualitative behaviour near the possible low-temperature fixed points is
not affected by the exact form of1(ω) away from the Fermi level.

4. Results for static properties

The Hamiltonian (26) is solved with the NRG for the parametersεf = −U/2 = −10−3,
3 = 2.5 and different values forr and10. At each iteration step we keep≈500 states
which is sufficient for the calculation of thermodynamic properties.

We first want to discuss the phase diagram of figure 1 where we have plotted the critical
value1c versusr. For any10 > 1c the system flows to a strong-coupling fixed point (SC)
similar to the fixed point in the standard case [7]. The energy spectrum at this fixed point
can be explained by removing the first conduction electron site from the chain due to its
strong coupling to the impurity. The remaining chain, however, has a different structure as
compared to ther = 0 case. Therefore this SC fixed point does not have the Fermi liquid
properties of the standard single-impurity Anderson model (see below). For10 < 1c the
system always flows to the local-moment fixed point (LM) with the impurity effectively
decoupled from the conduction band. Again, the resulting energy levels are in agreement
with those of the free conduction electron chain.

For both the Kondo model and the Anderson model1c(r) diverges atr = 1
2 and we

find for the Anderson model a logarithmic divergence

1c,A(r) ∝ − ln

(
1

2
− r

)
. (31)

However, the behaviours of1c(r) for 0 < r < 1
2 are quite different for the two models.

Ingersent finds an extended linear region1c(r) ∝ r which is approximately valid up to
values ofr = 0.4 (see the inset of figure 1). In our case,1c(r) also starts linearly and is
in agreement with the result for the Kondo model up tor ≈ 0.02, but increases far more
rapidly for largerr.

The difference from [9] is mainly due to the fact that for the parameters used here,
the f-level lies within the pseudo-gap density of states. Under the assumption that the
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Figure 1. The r-dependence of the critical coupling1c which separates the strong-coupling
regime (1 > 1c) from the local-moment regime (1 < 1c). The filled squares show the result
for 1c,A(r). In the inset we compare the scaled critical coupling1′c,A(r) (open squares) with
the result obtained by Ingersent for the Kondo version of the Hamiltonian (3) (circles).

relevant coupling1′ for this problem is (approximately) the value1(ω = εf), we have the
exponential dependence

1′(r) ≈ 10|εf |r = 10er ln |εf |. (32)

As ln |εf | has a large negative value,1′(r) is strongly suppressed for increasingr, so a
much larger10 is needed to reach the strong-coupling fixed point. This increase of the
parameter regime in which local-moment formation is observed has also been found by
Gonzalez-Buxton and Ingersent [14] who applied a ‘poor man’s scaling’ approach to the
Anderson version of the pseudo-gap problem. To show that equation (32) basically explains
the difference between the Kondo model and the Anderson model, we have plotted in the
inset of figure 1 both1c,K(r) for the Kondo model and1′c,A(r) = 1c,A(r) exp(−7.9r) (the
value 7.9 was chosen in order to fit1′c,A(r) to 1c,K(r)). The linear region of1′c,A(r) now
extends tor ≈ 0.4.

The remaining difference between1c,K(r) and1c,A(r) is due to the fact that the Kondo
model and the Anderson model are related via the Schrieffer–Wolff transformation [10] only
in the limit J → 0 (corresponding toV 2/U → 0). Therefore, the agreement of the results
for the two models is only guaranteed for1→ 0. Away from the line1 = 0, there is no
exact mapping between the Kondo version and the Anderson version.

The critical coupling1c(r) is determined as follows. Figure 2 shows the temperature
dependence of the effective magnetic moment forU = 0.001, εf = −U/2, r = 0.48 and
different values of1. In this graph, the LM fixed point (characterized byµres≡ µeff(T →
0) = 1/4) is reached within the given temperature range for1 = 0.01 and1 = 0.02.
The valueµres= r/8= 0.06 corresponding to the SC fixed point is clearly approached for
1 = 0.16 while for1 = 0.04 this value should be reached at a much lower temperature.
From figure 2 we determine1c(r = 0.48) as≈0.03 and repeat this procedure for different
values ofr. Similar results forµeff(T ) have been obtained by Ingersent and CJ.

The valueµres= r/8 at the SC fixed point can also be derived directly from the semi-
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10
−13

10
−9

10
−5

10
−1

T

0.00

0.06

0.12

0.18

0.24

0.30

µ ef
f

∆=0.01
∆=0.02
∆=0.03
∆=0.04
∆=0.16

Figure 2. The temperature dependence of the effective magnetic moment forU = 0.001,
εf = −U/2, r = 0.48 and various values of1. For1 < 0.03, the system flows to the local-
moment fixed point with the corresponding effective magnetic momentµ0 = 1/4. For1 > 0.03
the magnetic moment is partially screened and approaches the residual valueµres= r/8= 0.06
from above.

infinite chain form of the free-conduction-electron chain at this fixed point. One simply
has to compare the effective magnetic moment for the system with and without the first
conduction electron site.

The temperature dependence of the specific heat coefficientγ (T ) = C(T )/T in the SC
regime is shown in figure 3. The low-temperature behaviour ofγ (T ) is described by a
power law of the form

γ (T ) = c1T
−r + c2T

−2r . (33)

Although equation (33) resembles an expansion inT −r , there cannot be any terms likeT −3r ,
T −4r etc as the corresponding entropy would then diverge forT → 0 (for e.g.r = 0.4).

The exponentα defined byγ (T ) ∝ T α is shown in the inset of figure 3. In an
intermediate-temperature regime,α approaches the value−r, consistently with the result of
CJ. However, for lower temperatures another term with the exponentα = −2r is dominant.
This term is strongly suppressed in the intermediate regime due toc2 being much smaller
than c1. This crossover from theT −r - to theT −2r -behaviour isnot due to a crossover to
a new low-temperature fixed point. For the spin susceptibility we confirm the result given
by CJ:

χ(T ) = r

8
T −1+ c′1T −r + c′2T −2r . (34)

In the LM regime we find

γ (T ) = c3T
r−1 (35)

and

χ(T ) = 1

4
T −1+ c′3T r−1. (36)
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γ
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10
−18
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−13
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−0.9

−0.7

−0.4

α

Figure 3. The temperature dependence of the specific heat coefficientγ (T ) = C(T )/T for
U = 0.001, εf = −U/2, r = 0.48 and various values of1. The inset shows the temperature
dependence of the exponentα(T ) defined byγ (T ) ∝ T α . In an intermediate regime,α
approaches−r as expected from equation (1), but for lower temperatures a more strongly
divergent term withα ≈ −0.93≈ −2r dominates. This behaviour is not due to the crossover
to a new fixed point.

5. Results for the spectral function

The impurity spectral function

A(ω) = 1

Z

∑
nm

|〈n|f †−1σ |m〉|2δ
(
ω − (En − Em)

)
(e−βEm + e−βEn) (37)

(with the partition functionZ = ∑m exp(−βEm)) has not yet been calculated in previous
papers on the pseudo-gap problem. We assume that the ground-state energyEg is set to
zero and concentrate on the zero-temperature limit, in which the spectral function takes the
form

A(ω) = 1

Z

{
2
∑
ngmg

|〈ng|f †−1σ |mg〉|2δ(ω)+
∑
ngme

|〈ng|f †−1σ |me〉|2δ(ω + Eme)

+
∑
nemg

|〈ne|f †−1σ |mg〉|2δ(ω − Ene)
}
. (38)

Here, the partition functionZ equals the total degeneracy of the ground state. Theng and
mg label all of the states with energyE = Eg = 0 and thene andme label all of the excited
states. The first term in equation (38) would correspond to a transition between different
states withE = 0, but such a term (resulting in aδ-function at the Fermi level) is not
present in the NRG results. There is one state with excitation energyEex→ 0 for N →∞
but the matrix element between this state and the ground state vanishes asN →∞.

In order to obtain the full frequency dependence of the spectral function within the
NRG, it is necessary to combine the information of all iteration steps, as in each iteration
the results are only given for a certain frequency range (see also [15, 16]).
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A
(ω
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Figure 4. The impurity spectral function forU = 0.001, εf = −U/2 and different values ofr
and1. For r = 0.25 and1 = 0.02 (solid line, SC regime), the spectral function diverges as
A(ω) ∝ |ω|−r for |ω| → 0. In the LM regime (for bothr = 0.25 and1 = 0.0002 (dotted line)
and r = 0.75 and1 = 0.02 (dashed line)) the spectral function vanishes as|ω|r . The inset
shows the coefficientα(ω) defined byA(ω) ∝ |ω|α(ω).

In figure 4 we show results for the spectral function forr = 0.25,1 > 1c (solid line,
SC regime),r = 0.25, 1 < 1c (dotted line, LM regime) andr = 0.75 (dashed line, LM
regime). For these calculations we used3 = 2 and kept≈800 states at each iteration.

We find thatA(ω) diverges as|ω|−r for ω→ 0 for any set of parameters which lies in the
SC regime. Note that this result suggests the conventional behaviourA(ω) ∼ 1/(π1(ω))
asω→ 0 for the SC case. Taking this together with the resultγ (T ) ∼ T −r (neglecting the
second term in (33) for the moment) one could be tempted to interpret these results within
a standard Fermi liquid approach. Let us however emphasize that in spite of these results
the system is not a Fermi liquid for anyr > 0.

This observation becomes more evident in the LM regime, where the behaviour of the
spectral function is qualitatively different. Namely, in contrast to the SC case, we find that
the spectral function vanishes asA(ω) ∝ |ω|r here. In addition, no qualitative difference,
apart from the exponent, can be observed between the cases wherer > 0.5 andr < 0.5.

6. Summary

To summarize, we have studied the problem of an Anderson impurity in a pseudo-gap Fermi
system for particle–hole symmetry using a generalization of the numerical renormalization
group method [6, 7]. We find a behaviour similar to that of the corresponding Kondo
model investigated by CJ [8] and Ingersent [9]. However, the critical line1c separating the
strong-coupling and local-moment regimes of these two models shows quite different forms
for r = 0 (where1c starts linearly) and forr = 1/2 (where1c diverges). This difference is
mainly due to the fact that we have chosen the f-level to lie within the pseudo-gap. In both
the strong-coupling and the local-moment regime the thermodynamic quantities specific heat
and spin susceptibility show power-law behaviour.
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We have also presented the first calculations of the impurity spectral function for this
model. We findA(ω) ∝ |ω|−r in the strong-coupling regime andA(ω) ∝ |ω|r in the
local-moment regime. We do not find any indication that the local-moment fixed points for
r < 1/2 andr > 1/2 are different.

As shown by Ingersent for the Kondo model, the critical values1c take finite values as
soon as particle–hole symmetry is violated. It would of course be interesting to see whether
this reduction of the critical coupling is the same for the Anderson model (work on this
problem is in progress).

Another interesting question is that of the relevance of the model studied here in the
context of the dynamical mean-field theory (for recent reviews see [17, 18]). The effective
single-impurity Anderson model appearing in the dynamical mean-field theory is coupled
to a (self-consistently determined) effective medium. There is a possibility that the density
of states corresponding to this effective medium develops a pseudo-gap structure under
certain conditions (e.g. near the metal–insulator transition). Also, the density of states of
the infinite-dimensional generalization of the honeycomb (d = 2) and diamond (d = 3)
lattices is proportional to|ω| near the Fermi level [19].
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Appendix A. Other discretization schemes

In this appendix, we want to show that the discretization used by CJ leads to the same
hopping matrix elementstn apart from a redefinition of the discretization parameter3. This
equivalence, however, is restricted to the special form of1(ω) and is not valid in general.

For1(ω) = 10|ω|r equation (12b) leads to

g(ε) = ε1/(r+1) (A1)

h2 = 10

π

1

r + 1
. (A2)

The discrete energiesξ±n take the form

ξ+n = −ξ−n =
1

dn

∫ +
dε g(ε) = r + 1

r + 2

1−3−(r+2)/(r+1)

1−3−1
3−n/(r+1)

= r + 1

r + 2

1− 3̄−(r+2)

1− 3̄−(r+1)
3̄−n. (A3)

In the last equation we have defined3̄ = 31/(r+1).
The hybridization in equation (A2) is independent of the frequency, and therefore the

result for(γ±n )
2 is the same as for a constant1(ω) = 10/(r + 1):

(γ±n )
2 = 10

r + 1
3−n(1−3−1). (A4)

With 3 = 3̄(r+1), equation (A4) gives

(γ±n )
2 = 10

r + 1
3̄−n(r+1)(1− 3̄−(r+1)). (A5)
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Equations (A3) and (A5) correspond to equations (24) and (25) with3 being replaced by
3̄. Obviously, also the resulting matrix elementstn will have exactly the same form as in
equations (28) and (29), and in terms of3 we find in the limit of largeN

tn
n→∞−→ r + 1

r + 2

1−3−(r+2)/(r+1)

1−3−1
3−n/(2(r+1))

{
1 n even

3−r/(2(r+1)) n odd.
(A6)

For the ratio oftn/tn−1 we then find

tn

tn−1

n→∞−→
{
3r−1/(2(r+1)) n even

3−1/2 n odd
(A7)

corresponding to the result given by CJ.
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