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Abstract. We use the numerical renormalization group method to study an Anderson impurity
in a conduction band with the density of states varyingpés) « |o|" with r > 0. We find

two different fixed points: a local-moment fixed point with the impurity effectively decoupled
from the band and a strong-coupling fixed point with a partially screened impurity spin. The
specific heat and the spin susceptibility show power-law behaviour with different exponents in
the strong-coupling and local-moment regimes. We also calculate the impurity spectral function
which diverges (vanishes) wittw| ™" (|w|") in the strong-coupling (local-moment) regime.

1. Introduction

The behaviour of magnetic impurities in metals is one of the best-studied problems in
condensed matter theory [1]. In most cases it is a very good approximation to replace the
conduction density of states by a constant, as small variations of the density of states do
not lead to a qualitative change of the physical properties (like the complete screening of
the impurity spin by the conduction electrons).

The question of whether these physical properties are different when the impurity is
coupled to a Fermi system with a power-law density of states) « |w|” near the Fermi
level was first discussed by Withoff and Fradkin [2].

A number of systems are expected to show this pseudo-gap density of states. Among
these are certain heavy-fermion superconductors [3] where the expoream take the
valuesr = 1 orr = 2 depending on the symmetry of the gap function. Other candidates
are semiconductors whose valence and conduction bands touch at the Fermi level [4]. In
guasi-one-dimensional metals, which can be viewed as realizations of the Luttinger model,
the exponent is a function of the Coulomb interaction [5] and can take values between
r < 1andr > 1.

Recently, the numerical renormalization group method (NRG) [6, 7] has been applied by
Chen and Jayaprakash [8] (referred to as CJ) and Ingersent [9] to the model of an impurity
spin coupled to a conduction band with a power-law density of states. In principle, this
Kondo model can be related to a corresponding Anderson model in the linfit-ef0 via
a standard Schrieffer—Wolff transformation [10]. There is, however, a transition between a
strong-coupling (SC) fixed point and a local-moment (LM) fixed point for the Kondo model
at finite J, so it is not cleara priori whether the behaviour at this transition will be the
same in the Anderson version of the model.
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Germany.
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The results of CJ and Ingersent can be summarized as follows. Foy any/; the
system approaches some kind of SC fixed point with the difference from the standard Kondo
model ¢ = 0) that the impurity spin is not completely screened (a residual magnetic moment
of r/8 always remains in the zero-temperature limit). This can be qualitatively understood
from the gradually decreasing density of states of the conduction electrons at the Fermi
level which are responsible for the screening.

The thermodynamic quantities show non-Fermi liquid behaviour in the SC regime:

(T
xs(T) = gT‘l +al™" +bT% @)

(with a, b = constant). The critical line/.(r) starts linearly for small but diverges at

r= % In addition, Ingersent has shown that this divergence only holds in the particle-hole
symmetric case and that a finitk is restored away from this symmetry. (This reduction

of J; has implications for the observability of the crossover in experimental situations.)

For anyJ < J; the system approaches the LM fixed point where the impurity is
effectively decoupled from the conduction band and a residual magnetic momepit of 1
remains. The thermodynamics in this regime has not yet been investigated.

In this paper, we want to study the behaviour of an Anderson impurity in a pseudo-gap
fermion system where we restrict ourselves to the symmetric case. In section 2, we want
to describe our approach to the generalization of the NRG with a non-constant density of
states, and outline the differences from that of CJ and Ingersent. The resulting formula for
the hopping matrix elements of the semi-infinite chaindbrn is given in section 3. The
numerical results for static properties and the spectral function are discussed in sections 4
and 5, respectively.

2. Generalization of NRG to a non-constant density of states

The Hamiltonian that we want to study in this paper is the conventional single-impurity
Anderson model

H=Y efl, fro+Ufly fonfly) fa
+ Zskcigcktr + Z V(£k)<f_Tlnga + C/L;f—lcr)~ (3)
ko ko

In the model (3), the:g,) denote standard annihilation (creation) operators for band states
with spin o and energyg,, the fﬂ)’a those for impurity states with spia and energy
g. The Coulomb interaction for two electrons at the impurity site is giverUbgnd the
two subsystems are coupled via an energy-dependent hybridiZétign (the restriction
to a hybridization depending oh only throughe, is not necessary but is convenient for
pedagogical reasons).

In the following we show that the Hamiltonian (3) is equivalent to a form which is

more convenient for the derivation of the NRG equations:

H=Y eifly foao+Uf o £l fay

1 1
+ X [ et [ e he(fard i) @
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where we introduced a one-dimensional energy representation for the conduction band with
band cut-offs at:1, dispersiong(e) and hybridizationz(¢). The band operators fulfil the
standard fermionic commutation rulgs! , a... | = (e — '),

To establish the equivalence of the Hamiltonians (3) and (4) we prove that for a specific
choice of g(¢) and h(e) they lead to the same effective action for the impurity degree
of freedom. This effective action is obtained by integrating over the conduction electron
degrees of freedom. For the Hamiltonian (3) one gets

Seri (W, Y1) = Si(y, ¢ >+( ) > U1 Vom- 1Zv<sk> G:, (k) )

(see for example [11])n andm count the steps on the imaginary time axis 4D with
N the number of stepsy andy ! are Grassmann numbers corresponding to the impurity
operators.S; describes the unhybridized impurity. Tl (k) are Green functions for the
free conduction electron system.

The action corresponding to the Hamiltonian (4) can be written as

1
S v x. xD =S, v + Zflds x;,,,((l— f,g(e))xm_l - x)

1
_ % > [ e hO Xl Vons + ¥y reons] ©)

Xeon @nd x.,, are Grassmann numbers corresponding to the conduction electron operators
al, anda,,. Integrating over the conduction electron degrees of freedom leads to

Seit(W. 1) = Si(y, ! )+( ) DTN — f de h(£)2GE,, (g(e)). %

To compare the effective actions (5) and (7), the sum avir (5) has to be transformed
into the energy integral

1
> V(E?G, (k) = / de V(e)%0(e)G, (2). ®)
k -1

This also defines the density of states for the free conduction elegitensThe equivalence
of the effective actions (5) and (7) leads to the condition

1
/ dg ﬂh(s(g»zG:;m(g) = f 1de V()?p(e)GS,, (&). 9)
This can only be fulfllled for
de
( ) U h(e(x))? = V(x)2p(x) (10)

(with (x) the inverse of(g)). For a givenA(x) = nV(x)?p(x) there are obviously many
ways of dividing the energy dependence betweér) and the dispersio(¢(x)). One
possibility is to choose

gle) =¢ and h(g)? = %A(e). (11)

For A(e) = A, equation (11) corresponds to the standard case (see equation (2.4) in [7]).
It might also be convenient to séte) = h. Together with the conditioa(—1) = —1 and
£(1) = 1 this leads to

8
o0 =1+ [ draw (122)
mh -1



10466 R Bulla et al

and
1 1
h? = 7f de A(e). (12b)
2 -1

These equations also reduces(g) = g and h?> = (1/7)A for a constantA(e) = A.
Equations (11) and (12 have already been derived by CJ [12]. In a subsequent publication
[8] these authors used equation flZor the mapping of the Kondo model onto a semi-
infinite chain (see appendix A for a discussion of the resulting hopping matrix elements).

The first possibility (11) has a conceptual disadvantage arising from the logarithmic
discretization of the conduction band. Within each interval {, x,] and [—x,, —x,+1],
with x, = A™", the conduction electron operators are expressed in terms of a Fourier
expansion. As long as(¢)? is constant in each interval, the impurity couples only to
the average componenp (= 0) of the conduction electrons. Therefore it is reasonable
to neglect all of thep # 0 states (this becomes exact in the limit— 1). This line of
reasoning obviously does not hold for equation (11).

On the other hand, the energy dependenceé\ ¢f) can be taken into account in the
hybridization by defining:(¢)? as the mean value:

1 £, 1
hE? = —f de = A(e) (13)
d, T

+ X - X1
/ dsz/ de / dsz/ de (14)

(with d, = x, —x,+1) in each interval of the logarithmic discretization. This is so far not an
approximation, as the remaining energy dependence will be incorporated in the dispersion.
The advantage of an energy-dependent hybridization as in equation (13) is that the resulting
dispersion has the formg(+x,) = +x, for all n, i.e. at all pointsx, of the logarithmic
discretization. This ‘linear’ form (for intermediate valuegg) = ¢ is not fulfilled) leads
to a scaling behaviour of the hopping matrix elements (see equation (30)) of the form
t, o« A™"/2 slightly modified due to the structure af(¢). The representation (b},
however, leads to a scaling with an effectidgy not equal toA which might even depend
on the number of iterations, thus making the analyses (of the fixed points, the relevant
energy scale, etc) more difficult.

For these reasons, we adopt the representation (13) in the following. This gives for the
hybridization part of the discretized Hamiltonian

thb = \/?Z [filafO(r + fgaf—la] (15)

with
1 N _
o — T — n o + nbmr 16
fo &;[V no + ¥y Buo | (16)
1
=22+ 000 = [ e AE (17)
+
(5?2 = / de A(e). (18)

The discrete conduction electron operatags (b,,) for positive (negativey correspond
to those introduced in [6, 7]. According to the differential equation (10) we should now
have to solve foe(x) and inverts(x) to obtain the dispersion(e) = g(¢). This is actually
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not necessary because the single-particle energies in the conduction electron part of the
discretized Hamiltonian

HC = Z [ rjaiaand + gi;biob’lU] (19)
only depend on the integral ovegke):
+
= [ d e (20)
It can be shown that the discrete enerdjgsare given by
+ +
gf:/ndsA@n//mdeA@) (21)

This equation, together with the form of the hybridization part, has already been used by
Sakai and Kuramoto [13], although no derivation was given in their article.
The discretized Hamiltonian for the single-impurity Anderson model now takes the form

H = Zsffjlgffla + Uflefflejllffu + Z [E:algano + é'_n_bj,gbmr]

+ \/f:" [£14 for + 1 f 10 (22)

3. The pseudo-gap density of states—mapping onto a semi-infinite chain

We now consider a\(w) of the form
A(w) = Aglo|” -1<w<l (23)

The discrete energiest of the conduction electrons and the hybridization matrix elements
¥ £ connecting impurity and the conduction electrons take the form

r+11—A0+2

t=_f = A 24
%-n é}’l r + 2 1 _ Af(r+1) ( )
and
A
yH2=@ )%= D0 A (g ACHDy (25)
r+1

The mapping of the discretized Hamiltonian (22) onto the semi-infinite chain form

H=Y efly, fao+Ufly foanfly foa

+ Iy I:fnfafn-kla"i‘fyj.t,_lgfna:l +\/§|:filgf00+fggf—la:| (26)
on=0
where
2
§o = Fi1 (27)

is described in [6] and [7]. The only difference appearing here igtdependencg of the
g+ andyr. (Note that in the non-symmetric case, additional terms of the forfi, f.o
are generated.) For the hopping matrix elemeptse find the following expressions:
a2’ 11— A—C+D

21 Ao [T ATV [1 AL T[] A @i )T
r — 7

th=A

(28)
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for evenn and
(r+2)

_ A—(m+r)/2 r+11-A" _ A—m+D
=4 rr21-aom BT

x [1- A—(2n+r+1>]—1/2 [1- A—(2n+r+3>]—1/2 (29)
for odd n. Equations (28) and (29) have been verified numerically and by analytical
calculation oftg and#;. In the limitn — oo, equations (28) and (29) reduce to

(30)

hoo F 11— A0+ ) 1 n even
t, — —n/
r+21—A-0+D AT? n odd

This limit of the hopping matrix elements has also been found by Ingersent [9], although
the formula forall n is not given in his paper. The result obtained by CJ is discussed in
the appendix.

An analytical form of ther, for all n > 0 can only be given when the power law
A(w) = Aglw|” extends to the band edges. In any experimental realization, however, we
expect this power law only to be valid near the Fermi level. On the other hand, numerical
studies show that any deviation from the form (23) close to the band edges merely affects
the first coefficients, while the asymptotic behaviour again dependsamy and is given
by (30). Thus the qualitative behaviour near the possible low-temperature fixed points is
not affected by the exact form af (w) away from the Fermi level.

4. Results for static properties

The Hamiltonian (26) is solved with the NRG for the parametgrss —U/2 = —1073,
A = 2.5 and different values for and Aq. At each iteration step we keep500 states
which is sufficient for the calculation of thermodynamic properties.

We first want to discuss the phase diagram of figure 1 where we have plotted the critical
value A versusr. For anyAg > A the system flows to a strong-coupling fixed point (SC)
similar to the fixed point in the standard case [7]. The energy spectrum at this fixed point
can be explained by removing the first conduction electron site from the chain due to its
strong coupling to the impurity. The remaining chain, however, has a different structure as
compared to the = 0 case. Therefore this SC fixed point does not have the Fermi liquid
properties of the standard single-impurity Anderson model (see below)Afet A the
system always flows to the local-moment fixed point (LM) with the impurity effectively
decoupled from the conduction band. Again, the resulting energy levels are in agreement
with those of the free conduction electron chain.

For both the Kondo model and the Anderson modelr) diverges atr = % and we
find for the Anderson model a logarithmic divergence

Aca(r) o — In(i — r). (31)

However, the behaviours ok (r) for 0 < r < % are quite different for the two models.
Ingersent finds an extended linear regiap(r) o« r which is approximately valid up to
values ofr = 0.4 (see the inset of figure 1). In our cage,(r) also starts linearly and is
in agreement with the result for the Kondo model uprter 0.02, but increases far more
rapidly for largerr.

The difference from [9] is mainly due to the fact that for the parameters used here,
the f-level lies within the pseudo-gap density of states. Under the assumption that the
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Figure 1. The r-dependence of the critical couplinyc which separates the strong-coupling
regime A > Ac) from the local-moment regimeA( < Ac). The filled squares show the result
for Aca(r). In the inset we compare the scaled critical couplhd(gA(r) (open squares) with
the result obtained by Ingersent for the Kondo version of the Hamiltonian (3) (circles).

relevant couplingA’ for this problem is (approximately) the value(w = ¢;), we have the
exponential dependence

A(r) ~ Aoles|” = Aol Mo, (32)

As In|g| has a large negative valuey'(r) is strongly suppressed for increasingso a

much largerAq is needed to reach the strong-coupling fixed point. This increase of the
parameter regime in which local-moment formation is observed has also been found by
Gonzalez-Buxton and Ingersent [14] who applied a ‘poor man’s scaling’ approach to the
Anderson version of the pseudo-gap problem. To show that equation (32) basically explains
the difference between the Kondo model and the Anderson model, we have plotted in the
inset of figure 1 botM\ k (r) for the Kondo model and\; , (r) = Aca(r) eXp(—7.9r) (the

value 7.9 was chosen in order to £it, 5 () to Ack(r)). The linear region oA 5 (r) now
extends tor =~ 0.4.

The remaining difference betweéx « (r) and A a (r) is due to the fact that the Kondo
model and the Anderson model are related via the Schrieffer—Wolff transformation [10] only
in the limit J — 0 (corresponding td’?/U — 0). Therefore, the agreement of the results
for the two models is only guaranteed far— 0. Away from the lineA = 0, there is no
exact mapping between the Kondo version and the Anderson version.

The critical couplingA¢(r) is determined as follows. Figure 2 shows the temperature
dependence of the effective magnetic momenttoe= 0.001, s = —U/2, r = 0.48 and
different values ofA. In this graph, the LM fixed point (characterized pys = et (T —

0) = 1/4) is reached within the given temperature range foe= 0.01 andA = 0.02.

The valueus= r/8 = 0.06 corresponding to the SC fixed point is clearly approached for
A = 0.16 while for A = 0.04 this value should be reached at a much lower temperature.
From figure 2 we determina.(r = 0.48) as~0.03 and repeat this procedure for different
values ofr. Similar results forue#(7) have been obtained by Ingersent and CJ.

The valueu,es = r/8 at the SC fixed point can also be derived directly from the semi-
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Figure 2. The temperature dependence of the effective magnetic moment fer 0.001,
et = —U/2, r = 0.48 and various values ak. For A < 0.03, the system flows to the local-
moment fixed point with the corresponding effective magnetic momegnt 1/4. ForA > 0.03
the magnetic moment is partially screened and approaches the residuglxgleer/8 = 0.06
from above.

infinite chain form of the free-conduction-electron chain at this fixed point. One simply
has to compare the effective magnetic moment for the system with and without the first
conduction electron site.

The temperature dependence of the specific heat coeffigi@t= C(T)/T in the SC
regime is shown in figure 3. The low-temperature behaviouy @f) is described by a
power law of the form

y(T) =T + T2 (33)

Although equation (33) resembles an expansiofi ifi, there cannot be any terms lige %",
T—* etc as the corresponding entropy would then divergelfes 0 (for e.g.r = 0.4).

The exponentr defined byy(T) o« T* is shown in the inset of figure 3. In an
intermediate-temperature regimeapproaches the valuer, consistently with the result of
CJ. However, for lower temperatures another term with the expanent-2r is dominant.
This term is strongly suppressed in the intermediate regime dug being much smaller
thanc;. This crossover from th& - to the T—% -behaviour isnot due to a crossover to
a new low-temperature fixed point. For the spin susceptibility we confirm the result given
by CJ:

x(T) = %T*l+c’lT*’ +c’2T*2’. (34)
In the LM regime we find
y(T) = caT"™* (35)

and

1
x(T) =7 T4 7L (36)
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Figure 3. The temperature dependence of the specific heat coeffigieht = C(T)/T for

U = 0.001,¢ = —U/2, r = 0.48 and various values ak. The inset shows the temperature
dependence of the exponeat7) defined byy(T) « T¢. In an intermediate regimey
approaches-r as expected from equation (1), but for lower temperatures a more strongly
divergent term withw ~ —0.93 ~ —2r dominates. This behaviour is not due to the crossover
to a new fixed point.

5. Results for the spectral function

The impurity spectral function
1 4
A@) = 2 D 1l flaglm)Po( — (En — E) (e PEr 4 ePEr) (37)

(with the partition functionZ = ), exp(—BE,,)) has not yet been calculated in previous
papers on the pseudo-gap problem. We assume that the ground-state Epesgyet to

zero and concentrate on the zero-temperature limit, in which the spectral function takes the
form

1 4 ,
Aw) =~ {2 D gl £l Im) P8(@) + Y Hngl £14, 1me) %8 (w + Ep,)

ngmg ngm,

+ DMl f Ly ) P — B . (38)

nemmyg

Here, the partition functiorz equals the total degeneracy of the ground state. n,hand
my label all of the states with enerdy = E, = 0 and then, andm, label all of the excited
states. The first term in equation (38) would correspond to a transition between different
states withE = 0, but such a term (resulting in &function at the Fermi level) is not
present in the NRG results. There is one state with excitation erfesgy> 0 for N — oo
but the matrix element between this state and the ground state vanishes>aso.

In order to obtain the full frequency dependence of the spectral function within the
NRG, it is necessary to combine the information of all iteration steps, as in each iteration
the results are only given for a certain frequency range (see also [15, 16]).
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Figure 4. The impurity spectral function fot/ = 0.001, e = —U/2 and different values of

and A. Forr = 0.25 andA = 0.02 (solid line, SC regime), the spectral function diverges as
A(w) « |o|™" for |w| — 0. In the LM regime (for both- = 0.25 andA = 0.0002 (dotted line)
andr = 0.75 andA = 0.02 (dashed line)) the spectral function vanishega#s. The inset
shows the coefficient (w) defined byA(w) o |w|*®.

In figure 4 we show results for the spectral function foe 0.25, A > A (solid line,

SC regime)y = 0.25, A < A (dotted line, LM regime) anad = 0.75 (dashed line, LM
regime). For these calculations we ustd= 2 and kept~800 states at each iteration.

We find thatA (w) diverges as$w|™" for @ — 0 for any set of parameters which lies in the
SC regime. Note that this result suggests the conventional behati@yr~ 1/(w A(w))
asw — 0 for the SC case. Taking this together with the regylf) ~ T—" (neglecting the
second term in (33) for the moment) one could be tempted to interpret these results within
a standard Fermi liquid approach. Let us however emphasize that in spite of these results
the system is not a Fermi liquid for amy> 0.

This observation becomes more evident in the LM regime, where the behaviour of the
spectral function is qualitatively different. Namely, in contrast to the SC case, we find that
the spectral function vanishes dsw) « |w|" here. In addition, no qualitative difference,
apart from the exponent, can be observed between the casesmwhdid andr < 0.5.

6. Summary

To summarize, we have studied the problem of an Anderson impurity in a pseudo-gap Fermi
system for particle—hole symmetry using a generalization of the numerical renormalization
group method [6, 7]. We find a behaviour similar to that of the corresponding Kondo
model investigated by CJ [8] and Ingersent [9]. However, the critical Apseparating the
strong-coupling and local-moment regimes of these two models shows quite different forms
for r = 0 (whereA. starts linearly) and for = 1/2 (whereA. diverges). This difference is
mainly due to the fact that we have chosen the f-level to lie within the pseudo-gap. In both
the strong-coupling and the local-moment regime the thermodynamic quantities specific heat
and spin susceptibility show power-law behaviour.
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We have also presented the first calculations of the impurity spectral function for this
model. We findA(w) « |w|™" in the strong-coupling regime and(w) « |w|" in the
local-moment regime. We do not find any indication that the local-moment fixed points for
r < 1/2 andr > 1/2 are different.

As shown by Ingersent for the Kondo model, the critical valdgdake finite values as
soon as particle—hole symmetry is violated. It would of course be interesting to see whether
this reduction of the critical coupling is the same for the Anderson model (work on this
problem is in progress).

Another interesting question is that of the relevance of the model studied here in the
context of the dynamical mean-field theory (for recent reviews see [17, 18]). The effective
single-impurity Anderson model appearing in the dynamical mean-field theory is coupled
to a (self-consistently determined) effective medium. There is a possibility that the density
of states corresponding to this effective medium develops a pseudo-gap structure under
certain conditions (e.g. near the metal-insulator transition). Also, the density of states of
the infinite-dimensional generalization of the honeyconib= 2) and diamondd = 3)
lattices is proportional tdw| near the Fermi level [19].
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Appendix A. Other discretization schemes

In this appendix, we want to show that the discretization used by CJ leads to the same
hopping matrix elements apart from a redefinition of the discretization parameterThis
equivalence, however, is restricted to the special formh@b) and is not valid in general.

For A(w) = Aglw|” equation (1B) leads to

gle) = ¥t (A1)
Ao 1

e — . (A2)
T r+1

The discrete energies® take the form

1 [+ r+11— A-0+2/0+D
+ = & = d — A_n/(r""l)
én én dn / 3 g(é‘) r + 2 1 _ A—l

r+11— A0
St (A3)

In the last equation we have defingad= AY/+D,
The hybridization in equation (A2) is independent of the frequency, and therefore the
result for (y£)? is the same as for a constattw) = Ao/ (r + 1):

A
()P = AT =AY, (A4)
With A = A”+D, equation (A4) gives

Ag - _
(yn:i:)Z — +01A7n(r+1)(1 _ Af(rJrl)). (A5)
r
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Equations (A3) and (A5) correspond to equations (24) and (25) witbeing replaced by
A. Obviously, also the resulting matrix elementswill have exactly the same form as in
equations (28) and (29), and in termssdfwe find in the limit of largeN

nosoo I+ 11— A-C+2/0+D A-@AD) 1 n even (A6)
" r+2 1—- A1 AT/ @r+D) n odd.
For the ratio oft, /7,1 we then find
t ATV @) n even
e (A7)
ti—1 A / n odd

corresponding to the result given by CJ.
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